Schur Q-polynomials, multiple hypergeometric series and enumeration of marked shifted tableaux

نویسنده

  • Hjalmar Rosengren
چکیده

Abstract. We study Schur Q-polynomials evaluated on a geometric progression, or equivalently q-enumeration of marked shifted tableaux, seeking explicit formulas that remain regular at q = 1. We obtain several such expressions as multiple basic hypergeometric series, and as determinants and pfaffians of q-ultraspherical polynomials. As special cases, we obtain simple closed formulas for staircase-type partitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariable Christoffel–Darboux Kernels and Characteristic Polynomials of Random Hermitian Matrices

We study multivariable Christoffel–Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, ...

متن کامل

Bumping algorithm for set-valued shifted tableaux

We present an insertion algorithm of Robinson–Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K-theoretic analogue of the Schur Q-functions. Résumé Nous présentons un algorithme d’insertion de...

متن کامل

Pfaffians and Determinants for Schur Q-Functions

Schur Q-functions were originally introduced by Schur in relation to projective representations of the symmetric group and they can be defined combinatorially in terms of shifted tableaux. In this paper we describe planar decompositions of shifted tableaux into strips and use the shapes of these strips to generate pfaffi.ans and determinants that are equal to Schur Q-functions. As special cases...

متن کامل

Dual equivalence graphs, ribbon tableaux and Macdonald polynomials

We make a systematic study of a new combinatorial construction called a dual equivalence graph. Motivated by the dual equivalence relation on standard Young tableaux introduced by Haiman, we axiomatize such constructions and prove that the generating functions of these graphs are Schur positive. We construct a graph on k-ribbon tableaux which we conjecture to be a dual equivalence graph, and we...

متن کامل

Fermionic representation for basic hypergeometric functions related to Schur polynomials

We present the fermionic representation for the q-deformed hypergeometric functions related to Schur polynomials. For q = 1 it is known that these hypergeometric functions are related to zonal spherical polynomials for GL(N,C)/U(N) symmetric space. We show that multivariate hypergeometric functions are tau-functions of the KP and of the two-dimensional Toda lattice hierarchies. The variables of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2008